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Our objective is to develop methodology for analyzing life test data. Initially,
we have only data-no mathematical models. Through an exploratory data
analysis or an analysis based on the physical processes generating the data,
we may judge an exponential life distribution model as appropriate for the
analysis of the data. Specifically:

(0.1) F(x!2) = 1 - exp [- ], x>0, 2> 0,

where A is the unknown constant failure rate. The vertical bar in F(x2I) indicates
that we are conditioning on the parameter A; i.e., for specified 2 the distribution
is exponential with failure rate 2. The corresponding density is

(0.2) f(xi)) = A exp [- A], X>0 2> 0.

1. - Basic concepts.

To begin with, we suppose the life test data consist of observed complete
lifetimes x,, x,, ... , x, on n units. For example, table 1.I lists lifelengths ordered
by rank of 100 Kevlar 49/Epoxy strands subjected to a high static load.[1].
An exploratory data analysis indicates that an' exponential life distribution
may be appropriate for analyzing these lifelengths. Thus we assume that the
observations constitute a sample of n independent, identically distributed
random variables with distribution F given by (0.1). Although we assume a
fixed A exists which specifies F, we are uncertain as to the true value of 2 and
seek a method which uses the data to express probabilistically our uncertainty
regarding the true value of 2.

143
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TA3LE 1.1. - Times to fail.re of strands subjected to stress at 80 % of mean rupture
strength.

Rank Hours Rank Hours Rank Hours Rank Hours

1 1.8 26 84.2 51 152.2 76 285.9

2 3.1 27 87.1 52 152.8 77 292.6

3 4.2 28 87.3 53 157.7 78 295.1

4 6.0 29 93.2 54 160.0 79 301.1

5 7.5 30 103.4 55 163.6 80 304.3

6 8.2 31 104.6 56 166.9 81 316.8

7 8.5 32 105.5 57 170.5 82 329.8

8 10.3 33 108.8 58 174.9 83 334.1

9 10.6 34 112.6 59 177.7 84 346.2

10 24.2 35 116.8 60 179.2 85 351.2

11 29.6 36 118.0 61 183.6 86 353.3

12 31.7 37 122.3 62 183.8 87 369.3

13 41.9 38 123.5 63 194.3 88 372.3

14 44.1 39 124.4 64 195.1 89 381.3

15 49.5 40 125.4 65 195.3 90 393.5

16 50.1 41 129.5 66 202.6 91 451.3

17 59.7 42 130.4 67 220.2 92 461.5

18 61.7 43 131.6 68 221.3 93 574.2

19 64.4 44 132.8 69 227.2 94 653.3

20 69.7 45 133.8 70 251.0 95 663.0

21 70.0 46 137.0 71 266.5 96 669.8

22 77.8 47 140.2 72 267.9 97 739.7

23 80.5 48 140.9 73 269.2 98 759.6

24 82.3 49 148.5 74 270.4 99 894.7

25 83.5 50 149.2 75 272.5 100 974.9

The first step is to evaluate the joint-probability density of the random

lifetimes XL, ... , X,, evaluated at the observed values x,, ... , x". Since we

are assuming that X,, ... X, are independent given At, the joint density of

the observed values is

(1.1) Hr f(X I A) = "exp x]
(.I P To fI or

1"1. The likelihood fuvetion. -To focus attention on the parameter of
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interest A, we regard (1.1) as a function of A and call

(1.2) (2v,..., xn) = An exp Xi]

the likelihood function. (The likelihood, although a function of the parameter A,
is not a probability density in the parameter. Hence the vertical bar in L is
used to indicate that the data to the right of the vertical bar are given.) The
likelihood function provides a means of quantifying the information contained
in the data concerning the unknown true value of the exponential parameter 2.

Suppose a unique value 'A of 2. exists maximizing the likelihood function.
then we call A the mode of L(x.r 1, ... , x,) and the maximum-likelihood estimator
('ILE) of A. In general, the 3ILE, when it exists, is a very useful concept.

To simplify the calculation of A, we use the fact that the maximum of the
likelihood, when it exists, is achieved at the same value of A as is the maximum

of the logarithm of the likelihood. Thus we compute

d nd--n L(.Iv, .) = . Ix,

and set the derivative equal to 0. We readily obtain

and verify that A maximizes L([lx,, ... , x.) for fixed x1, ... , x,.
The AILE A may be a very satisfactory estimator of the unknown failure

rate A for moderate to large sample sizes n. (Caution: For more complex life
distribution models involving an infinite number of unknown parameters, the
'NILE of the parameters may be quite misleading. See [2] for an example in
which the NILE converges to the wrong set of the parameter values even though
the sample size tends to infinity. Also see [3], p. 12, for a similar two-parameter
example and [4], p. 34, for a one-parameter example.) In the present case of
estimation of the single parameter A of the exponential, our uncertainty as to
the true value of A stems from the fact that our sample size n is finite.

We express our uncertainty concerning 2 by means of a probability dis-

tribution for A. To display explicitly this point of view, we let A denote a random

variable expressing our uncertainty concerning the unknown true value of A.

Bayes' theorem. A key theorem based on this point of view is the funda-
mental Bayes' theorem. It provides a method for computing the probability
density of the random variable expressing our uncertainty concerning the param-
eter conditioned on the observed data.
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1"2. Theorem (Bayes' theorem). - Let a) X and 0 be random variables with
joint-probability density p(x, 0), b) p(xz0) and p(01x) denote the corresponding
conditional densities, and o) r(0) denote the marginal density of O. Let 0
be the parameter space, i.e. 0 c-0. Then

(1.3) p(0 .) = p'eyd )0)
fp(xl0)n(0)d0
0

Proof. The joint density p(x, 0) of X and 0 may be written as

p(x, 0) = p(xO)n(O).

By definition of a conditional probability density,

p(oIX) = p(x, o)/p(x),

when p(x)> 0, where

p(x) J'p(xl0) (0) dO.

By combining the three equalities in the steps just above, we immediately

obtain the desired conclusion (1.3). 11

Prior and posterior distributions. Before analyzing statistical data, it is
helpful and efficient to assess prior knowledge. A convenient way to accomplish

this is to formulate a probability density on the parameter(s) of the model

selected. Once we select an appropriate model, and a prior distribution on the
parameter space for that model, we may complete a useful and informative
data analysis in an unambiguous fashion using only the standard calculus of
probability theory.

The prior density. First, we confine our choice of prior densities to proper

densities. A density ) is proper if Jf(;,)dA exists and equals one.

Next, to motivate the concept of a natural conjugate prior for X, we sup-
pose that, in the particular problem under disciission, we have very little prior
information concerning A. It seems natural to assume initially a rectangular
prior density:

ZOW - for O<A<M,

0 otherwise,

where M is a very large number (say X = 102). Under this assumption on the

prior density, we assign the same probability that A is in any interval in [0, M3]
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of a specified length. For example, the a priori probability that 5<1<10

is the same as the a priori probability that 19 < I< 24.

The posterior density. Suppose we have observed a sample of n lifelengths
x,, ... X,. having joint density p(x,, ... , x.IA). By Bayes' theorem, the posterior

density of A[ based on ne(A) is given by

'T,(A1x, , ..., x.) = p(x, ... n,4o(A)/;g~x,, ... , x.JA)aoA)dG.

0y

Recall that the likelihood L(;Ix, ... , X.) = p(x1 , ... , a ), namely the prob-

ability density of the observed outcome considered as a function of the param-

eter A. Thus we may write

0

Since A has been integrated out in the denominator, the denominator is now a

constant with respect to A. Hence

;r,(21X,, ..., X.) oc ( 1 ,.., ) .;)

where o means ((proportional to ). Thus the right-hand side is the same as

the left-hand side up to a constant which does not depend on the parameter ;..

Notice that, since the data x,, ... , x,, have already been observed, the data

are not considered variables at this stage of the analysis.

Assuming the rectangular prior 7r(A) = M-1 for 0<AM, we obtain for

the posterior density of A
N

-rdAix,. ....- '') exp A ji x J]/JP' A cp I-A X, ~rdA.

n

For n-1  xi > M-', this is approximately
1

(1.4) '1(Ax1,..., x.) ( ) exp A 4 x,]/(n + 1),

where 1(n + 1) =fus exp [- u] du is the n! function. In computing (1.4) we
o 0

have used the fact that f c+lus exp [- cu] du = (n + 1) for all c > 0.
0

Thus, if we assume initially a rectangular prior on [0, M], M large, the re-

suiting posterior density is approximately of the form

(1.5) ba).-exp [- bA]lF(a) for A > 0,
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where a, b > 0. This is approximately a gamma density with shape parameter
a = t + 1 and scale parameter

b = 5x,.
i-1

Now, suppose we obtain an additional independent random sample of
lifelengths yg, Y.,, ... , y,,. Then it is reasonable to use as our new prior density
the posterior density (1.4) obtained from the previous sample. Using as our
new prior

.T,(;.) = b,,;.,, - ' exp [- b,]/IF(a)

with a = n 1 and b = xi, we obtain

f Pit exp A- Y] ,[ba.4-1 exp [- bAt]lr(a)] G2

0

or

(1.6) ~1,1Y, "", Y,,) (b + ' y,)mm+a- exp [- ,(b + y,)] /I(m + a).

Thus a is increased by the additional number in of observed failures and b

is increased by the additional quantity y, to obtain the new posterior density

- 2. note, however, that the form of the posterior density, the gamma, is retained.
Because of this preservation property (the gamma prior used in the ex-

ponential model leads to a gamma posterior), the gamma prior is called the
( natural conjugate )) prior for the parameter A in the exponential model. More
generally, a family of prior distrilbutions is (( conjugate ) with respect to a given
statistical model if the form of the posterior in each case is the same as that of
the prior and it is the minimal such family; parameters of the posterior dis-
tributions will, of course, change in accordance with the data observed.

In the present case, we can interpret the' prior density parameter a - 1
(if a is an integer > 1) as the number of observations in a previous experiment
(actual or conceptual) and b as the corresponding total time on test.

In the present exponential model, the gamma prior for A' is mathematically
convenient and has intuitive interpretation in terms of an equivalent sample.
However, the analyst is not confined to a choice within this family. Rather,
the choice of the prior distribution should always reflect the best possible
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specification of the analyst's prior information concerning the unknown param-
eter. Thus, in reporting the results of the data analysis, the analyst should

present his specification of the prior and the basis for his choice.

1"3. Example. - Table 1.I lists the observed lifetimes of 100 organic fiber

strands subjected to a tatic load of 8009 - which corresponds to 800/ of their

mean rupture strength. Experience has shown that the lifetime of an organic

fiber strand at relatively high stress can be reasonably well fitted by an ex-
ponential life distribution. Thus we assume

P[lifelength > x] = exp [- .x] for x > 0,

where A. is unknown. As described above, we calculated the MLE of ;. as

A= 4.78. 10- 3/hour.

Since the sample size of 100 is moderately large, the likelihood

10 -

L(Akx,..., x100) = ;00 exp A 00 x,

will override in importance the retangular prior

0 A < M,

when M >A A. From the prior T0 we calculate the posterior density of A to be

approximately a gamma with parameters a = 101 and b = 20.917 hours.

(Note that a is dimensionless while b is measured in hours). See fig. 1.1. The
mode of the posterior density may be used to estimate .

Sufficient statistics. By a statistic, we mean a function (possibly vector-

valued) of the data. A statistic, of course, is often used to estimate an unknown
parameter of interest. Clearly, the complete set of d:bta observed is trivially

a statistic. For a large set of data, working with all of the observations may be
tedious or even unmanageable. Thus we are motivated to find a statistic of
smaller dimensionality like the sample mean (of dimension one) or the number

of failures and the total time on test (of dimension 'two), but which contain,
all of the information in the sample concerning the parameter. Preferably,
we would like to estimate the parameter using a statistic of lower dimensionality

which summarizes all of the information in the sample. We will often use D

to denote the observed data. For example, D could stand for the vector of

observed values (x,, x,, ... , x). Later it will denote more complicated data

sets. This motivates
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Fig. 1.1. - Computer plot of posterior gamma density of lambda.

1"4. Definition. - Let D denote the data with probability density p(DO)
indexed by the parameter 0. A statistic s is sufficient for 0 if and only if, for
every prior :T(0), the posterior

r(O-D) = p(DIO)r(0)/j'p(DO)r(0) dO

depends on the data D only through the statistic s; i.e., for every prior r, the
posterior can be written as 'z(Ois).

Intuitively, knowing s we are as informed about the parameter 0 as when
we know all the data collected.

There may be several sufficient statistics available for estimating a param-
eter. Clearly, from among these we would prefer to make use of one of lowest
dimensionality. For a given parameter, there actually may be more than one
sufficient statistic of lowest dimensionality and it may be vector valued.

An easy way to find a sufficient statistic is to examine the likelihood for the
kind of factorization displayed in

1"5. Lemma. - Let the likelihood L(01D) factor so that

L(O ID) -= g(s1O) h(D) ,

where h does not depend on 0. Then s is a sufficient statistic for 0.
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Proof. For an arbitrary prior density -, the corresponding posterior density
is given by

-r(0ID) = L(OID),-(0)/ L(O1D) r(0) dO

g(sj10) h(D),-t(0)/J*g(s 10) h(D),-r(0) (10 = g(sf0 gT(8G0);r(0) dO.

The last expression clearly depends on D only through the statistic s. Thus,
by definition 1.4, s is sufficient for 0. 11

For example, if x,, ... , x, are independent lifelengths in the exponential

model, given 2, then n and s a 3 xi is a sufficient statistic for the failure rate A
since

L() Jx,, ... , x,,) - exp I- 2 x,] 2 exp [- AS).

I.

The sample space. The sample space is the space or set of possible sample
outcomes. If we observe the lifetimes of n units, the sample space is

(1.7) S ---- {(X l, x2,..., X")Jx ,> O, 1 < i< n) .

For n - 2, S is the positive quadrant (see fig. 1.2).

x2

S

Fig. 1.2. X1

However, we may just as well consider another sample space. Suppose
we are told only the ordered lifetimes

ADV < X(a) < ... <: X(n),

i.e. we no longer know wvhich unit fails at time x(,, 1 < i < n. The sample space
corresponding to the ordered lifetimes is now

(1.8) s = {(X2,, x(1, ...w X(.e))0 < X1 <... <nX(.hv .

For n = 2, we now have fig. 1.3.
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x(2) 5

Fig. 1.3. 0 X

For sample space (1.7) and the exponential model we have the joint-prob-
ability density

1exp X xj>, I<i~n,j, otherwise.

For this case L( .x,, x2, ... , x,,) = p(x 1 , x?, ... , xfllt).

On the other hand, for sample space (1.8) and the exponential model we have

11!;.n poe., ... 0 < . ..."<,X(.

(1 ! potherwise.

The factor Pi! in (1.10) follows from the fact that the ordered observations can
result from any one of n! permutations of the observations xj, x., ... , x,. For
this case

L ,( . .., X(n)) (, ) ... , £ A)

where L, is the likelihood.
From (1.9) and (1.10) we see that

(1.11) L(,,x1., ,r2 .... r) Lo~( 1,, £,2), ... ,.

It follows that, for any prior for 2, the posterior density for I will be the same
no matter which of the above sample spaces we choose. From (1.11) and
lemma 1.5 we see that the order statistics X X(2), ... , x(,) are sufficient for ..

2. - Selected life test sampling plans.

In this section we illustrate the application of the concepts and methods

of sect. 1 when estimating under each of several commonly used life test

sampling plans.
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Sampling plan (a). Complete observation until a specified number of failures
have occurred. A popular plan consists of putting i items on test and observing
the failure times of the first k failures, where k is specified in advance. The
motivation for following this plan is to save time in determining an estimate
of the exponential failure rate.

Let

denote the successive times of failure of the earliest k failures; x(), ... , Ware

called the first k order statistics in a sample of size n. The likelihood of this
observed outcome under the exponential model is given by

L(2I!( ) 2exp [- A.r(;,]J exp [- (n - k) AYk,

(We follow the usual convention that 0! - 1.)
Simplifying, we have

(2.1) L(;D) eXp -- x () - - k

To verify the expression preceding (2.1), note that the combinatorial coef-
ficient W!/1! ... 1! (n- k)! represents the number of ways of choosing one

observation to correspond to each of x(1), X(,), ..., X and it - k observa-
tions for the n - k unobserved failure times, from among the n failure times
(of which only the first k are actually observed). The product factor represents
the joint density of the k actually observed failure times, given A. Finally,
the last factor represents the probability that n - k lifelengths each exceed
.rk), given A.

The expression in the exponent of (2.1)

k

(2.2) x, + (n - k)x(k) = fx 1 ) + (n - 1)(x)- X(1))
1

(n- k + l)(X(k)- X(__)) d! T

represents the total time on test until the k-th failure. Note that it is comprised
of nx(,), the total time on test observed until the first failure, of (n - 1)(x(, - x(t),
the total time on test observed between the first and second failures, ... , and
of (n - k + 1)(xk - x(k1 1), the total time on test observed between the penul-
timate and the last observed failures. (Of course, it is understood that, after
an item fails, it is no longer under observation.)

The total time on test statistic turns out to be a very important and usetiul
statistic not only in the exponential model, but also, after appropriate gen-
eralization, in a large number of other models involving incomplete data. In
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the exponential model, the total time oil test and the number of observed
failures constitute a sufficient statistic for A.. In the presently considered sampling

plan under which k, the number of observed failures, is specified in advance.
we see from (2.1) that (k, T) is sufficwtnt for A.

Suppose we assume a gamma prior oi 2.

=() = ba2ta-1 exp [- b4]/P(a).

Using (2.1), we obtain for the posterior

(2.3) z(2.ID) = [b + T(x(,).)]+ ).+a-l exp [- 7 b - T]/F(k ± a),

also a gamma, but with the shape parameter a of the prior density replaced
by a + k and the scale parameter b of the prior density replaced by b + T(xtk).

Note that the increment in the scale parameter is T(x(k)), the observed total

time on test. The mode of the posterior density is

Ao = (k +a- 1)1[b + T].

It is interesting to note that, for .((4) c, the mode of the posterior is exactly

the well-known 3MLE:

A= kT.

However, it should be emphasized that this prior is improper in the sense that

f4r(2.)d= c.
0

We would expect that, after collecting a set of data from the exponential

distribution, we would have more information concerning the unknown param-

eter A than before; more precisely, the peakedness of the density of A might

increase or the coefficient of variation might decrease. The coefficient of var-

iation of a distribution is the ratio of the standard deviation (assumed finite)

to the absolute value of the mean (asumed nonzero). In the case of the gamma

prior density, the mean is a/b, the variance is a/b2, and so the corresponding

coefficient of variation is a -t .
Under the present sampling plan, the posterior distribution, given in (2.3),

is also a gamma distribution, but with the shape parameter (the updated # a

value) now a + k. It follows that the coefficient of variation is now reduced

to (a + k)- 1. Thus, for fixed a, the coefficient of variation decreases roughly

as k0, where k denotes the observed number of failures. This simple calcu-

lation gives us a quantitative notion as to our relative uncertainty concerning .

both before and after observation and, therefore, concerning the decrease in

our uncertainty.
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Sampling plan (b). Observation terminated at fixed time (truncated sampling).
Suppose n units are put on life test at time t = 0 and each is observed until
failure or fixed time to, whichever occurs first. Given the random outcome
K = k (0 < k < n) observed failures in [0, to] and the times of failures, the cor-
responding likelihood is given by

(2.4) L(21D) =! ... !(n exp [ (n - k) to],

where the product in square brackets is defined as 1 for k - 0. The verification
of the likelihood expression (2.4) is similar to that obtained under the previous
sampling plan, leading to the expression preceding (2.1). One key difference
is that the number n - k surviving fixed time to under the present plan is random,
while the number n - k surviving past the k-th failure under the earlier plan
is specified in advance.

We may rewrite the likelihood L(AID) as

i! kexpl-- x - (n-k)tl .
(2.5) L((;.!D) := -_

It is clear from (2.5) and lemma 1.5 that the pair k and the total time on test

kT= I r(,) + (n- b) to

2_1

are su/ficient for A. Under the present sampling plan, both k and the T(t.) are
observed, and thus together constitute the data D.

From (2.5) the M1LE is computed as

= k/T(to).

Under the present sampling plan it is possible to observe k = 0 failures, leading

to a MLE of 0. Such an estimate is intuitively unsatisfactory; in this situation
an analysis based on the posterior distribution of I is preferable.

The posterior density resulting from a gamma prior (see (1.4)) is, using (2.5),

(2.6) :z(.JD) = [b + T]k+A4 +'- exp [- A[b + Ti]/rk +a a).

Just as in the previous sampling plan, the posterior coefficient of variation is
(a + k)- *, which is smaller than a- *, the prior coefficient of variation.

Sampling plan (a). Inverse binomial sampling. A unit is put on test until
it fails or reaches a specified age to, whichever occurs first. At this time, the
unit is replaced by a new unit. This procedure is repeated sequentially until k
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(specified in advance) failures are actually observed. The number N of unit";
that have to be tested titil k failures are actually observed is, of course, a
random variable. This plan may be used if we have only one test chamber
and we are able to test at most one unit at a time.

Let Y = min (X. t.), where X has exponential density At exp [- Ax], x >0.
Then, conditional on Y< to and t., the density of Y is given by

A exp [- A)y(1 - exp [- Ato]) for 0< t .

Thus if the successive failure ages actually observed are denoted by y ,

1 .... , ti corresponding eonditional joint density is given by

A .exp [-4~ A )kexP) I
g(y. . YkI;.~ .q< to. I <i~k) fJ- _________

_1 -exp[-- t'] (1 - exp [-At,])k

The probability that -V a units have to be tested in order to observe k actual
failures is given by

P [N = n 12] =( D(1 - eip [_ ).t03)k ex t( c)frnk

It follows that, given N= n and observed failure ages y,, Y., ..., Yk, the
corresponding likelihood is

( , (. )I. I -  k, n
0 < y<tO, i=1,..., I.

Combining exponentials we obtain

(2. 7) L(AJD) _ kepy +(-k

0<y,<t 0 , i=1,...,k.

From lemma 1.5, we conclude that (k, T), where

k
k='Jy, + (n - k) to,'

d-1

i8 sufficient for A, since k is fixed in advance.
From (2.7) we also obtain the posterior density for A based on a gamma

prior density as

(2.8) n(AID) = (b + T)k+.A +O-1 exp [- A(b + T)]/F(k + a).
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Note that the posterior densities are identical under the three sampling plans

so far considered! (Compare (2.8), (2.6) and (2.3).)

Remarks. In the three sampling plans considered so far, the number k of
observed failures and the total time on test T are all that we need from the
observations in order to complete our data analysis; the sufj iiency of k and T

makes this true. Note that this fact holds for any choice of a prior density.
The ( stopping rule * in each of the three test plans considered gives no

information about the parameter A, i.e. is noninformative about A. (As the

name implies, the stoppinmg rule is simply the rule for determining when testing
is to stop. The stopping rule is not necessarily the same as the stopping time.

For example, in the sampling plan (a) we test until k failures are observed and
then stop further observation.) If the stopping rule were to give information
about the parameter 2, then the total time on test T and the observed number
of failures would not be sufficient for A.

Finally, note that in the test plans considered thus far, the MILE is the ratio
of the number of observed failures to the total time on test. This simple for-
mula for the MLE holds in most of the testing procedures followed under the

exponential model.

3. - Inference based on mean life.

Thus far we have discussed inference for the exponential distribution based
on the failure rate A. For many analysts, the mean life 0 of the exponential
distribution may seem to be the more appropriate parameter to estimate.

Note that either parameter determines the other in the exponential model since

;a
0=7xexp[-Ax]dx = A-'.

0

Suppose we consider the simplest type of testing plan: n units are put on
test and observed until each fails. The corresponding mutually independent
lifelengths given A are x,, X2, ... , X,, constituting a complete sample from the
exponential density I

j(x O) = 0-' exp [- x/0].

The likelihood of the outcome is given by

P0 (I,, ... zX) = 0-. exp [- 01
1
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Clearly, the MLE of 0 is given by

k0 n'V Xi.

(Note that 0 = (A)-' (see (1.2)).)

Suppose now we have very little prior information on the parameter 0.
We, therefore, assume a rectangular prior density on 0:

) -1 for 0<M,

where X is large (*). The corresponding posterior density for 0 may be computed

approximately, by Bayes' theorem (theorem 1.2), as

(3.2) ,(0jx, ... , x,) = baO-(a+1) exp [- b/l]/1'(a)

for 0, a, b> 0, where now a = 'n-I and b = x.
1

The density of (3.2), denoted by :a.b(O), is called the inverted gamma density,
since, if 6 is a random variable with density :ra,b( 0

), then A-^ = has gamma
density (1.5).

We may verify readily that, if our initial prior is of the form a..b(o) of (3.2)
and we use any one of the sampling plans, then the corresponding posterior
density is also of the form (3.2). However, the parameter a of the prior is re-
placed by a + k in the posterior, and the parameter b of the prior is replaced
by b + T in the posterior. As before, k denotes the number of observed failures
and T is the total time on test. This follows readily from the likelihood expres-

sion (3.1) and the fact that in this case T = xj since all lifelengths are ob-
served.

The mean of the posterior density. The mean of the inverted gamma density
given in (3.2) is readily calculated:

0{bao-(a+l) exp [- b/]/Fl(a)} dO b/(a - 1).
0

For the inverted gamma posterior density in which the parameters are a + k

() It would be inconsistent mathematically to assume a rectangular prior on both
and 0 = 1-1, even though we have very little prior information on both parameters.
Ve assume a rectangular prior for 6 here to motivate the use of a natural conjugate

prior.
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(in place of a) and b + T (in place of b), the corresponding mean takes the form

b T bT~~~(3.3) = - '- i 0-W) IV- -- -k

where w =- k/(k + a - 1). Thus the mean of the posterior density may be written
as a convex combination of the prior mean b/(a - 1) and the maximum-likelihood

estimate Tk of the exponential life distribution mean. Note that, as k, the number
of observed failures, increases, the posterior mean attaches more weight to the
MLE of the true mean and less weight to the prior mean.

Table 3. summarizes the properties of the natural conjugate prior density
and of the corresponding posterior density for the two different parametrizations
of the exponential model.

TABL E 3.1. - Comparison of alternative parametrizations of the exponential model.

Parameter Failure rate, . Mean life. 0

likelihood Ak exp (- )T] 0-k exp [- T/0]

natural conjugate ba Aa-1 exp [- b.]T(a), ba 0-(a+I) exp [- b/O]/F(a),
prior a. b > 0 (gamma) a, b> 0 (inverted gamnma)

prior mode a - 1 b

b a-I

prior mean aib b/(a - 1), a> 1

prior variance a/b 2  b2/(a - 1) 2 (a - 2), a> 2

prior coefficient a-1 (a- 2) - !, a> 2
of variation

posterior mean (a - k)/(b - T) (b - T)/(a + k - 1), a> 1

posterior variance a - k (b - T)2

(b - T)', (a - k- 1)2 (a + k- 2)'

a> 2
posterior coefficient (a - k)-i (a - k- 2)-*, a> 2
of variation

Note: k - number of observed failures, T - total time on test.

Arbitrary prior density. In our analysis up to now, we have focused mostly
on the case in which the prior density is the natural conjugate prior. In this
subsection, we expand our consideration to cases in which the prior is not nec-
essarily the natural conjugate prior. We obtain results similar to those holding
in the natural-conjugate-prior case.

Let ;(0) be a prior density on 9 such that {01.(O)> 0} is an interval on

[0, oo). We show in the appendix that

(3.4) P[O > 0ok, T] = fr(O1k, T)dO
0,
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is decreasing () in k > 0 for fixed T and increasing (*) in T for fixed k, i.e. the
posterior random variable 0 is stochastically decreasing in k and stochastically
increasing in T. In particular,

E[O6k = 0., T] - E[Oik = 0, T = 0];

the lower bound is, of course, the mean of the prior density. Thus observing
total time on test without observing failures tends to change our belief about 0
as compared with our prior belief; we tend to believe in a larger 0. Howevei,
for the natural conjugate prior, the variance of 0 given k and T decreases with k
but increases with T. -lso the coefficient of variation is constant in T but
decreases with k (see table 3.). Hence, if k- = 0, large values of T tend to make
us optimistic regarding 0. However, failures are needed to sharpen the posterior

10 posterior mea.n

9-

8 -

7 -

posterior standr r
6 dzeviazt ion

5.'-
b

(a-' )ha 23

2-

1 1- coefficient of variation

77:f -2 -L ' ' ' * . -

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.02.2 2.4 2.6 2.8 3.0 3.2
x ) = 

I x(2) = 3 time

Fig. 3.1. - Posterior mean, posterior standard deviation and posterior coefficient of
variation as a function of elapsed test time.

() Terminology: Throughout we use the tern ( increasing in place of o nondecreasing,
and # decreasing* in place of 4 nonincreasing o.
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density. Similarly, for . = 9-1, we call show that for a general prior density

on A under mild regularity conditions

P[A > I k, T]

increases in k for fixed T and deereases in T for fixed k, just as we would expect.

3"1. Example. - Suppose our prior density on 6 is the natural conjugate
prior with a = 4 and b = 12. We put 10 units on test. The earliest failure
occurs at X) - 1. followed by a second failure at X(,) = 3. In fig. 3.1, we
plot the posterior mean. posterior stanl ard deviation and posterior coefficient
of variation as a function of t, the test time elapsed. Table 3. may be used
to generate the plots. Note that failures cause vertical drops in the graphs.

In fig. 3.2 we have plotted the posterior density for 0 at selected times
during the life test. The posterior density for t = 0 is, of course, the prior
density. Notice the shape of the posterior density at t = 1- (i.e. just before

the first observed failure) and at t 1 (i.e. just after the first failure).

0 320,

t=O

0.280-

0.240

t==1/2
L

...
t F

0 060

~0'2

0.080-

0.040

•0 . . . . . . . . . . . . . . . . ,.., • ' 2

1.0 6.5
meaon Life, ,

Fig. 3.2. - Posterior densities at selected test times (t).
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4. - Notes and rejerences.

Section 1. Books which emphasizo Bayesian concepts as well as their ap-

plications are [5, 6]. In a series of papers, BASU [4, 7, 8] points out the inade-

quacy of other approaches to statistical inference. Definition 1.4 of sufficiency

is attributed by BASC to KOLMOGOROV [9]. The connection between sample

theory (Fisher) sufficiency and Kolmogorov sufficiency is discussed in [10].

Fisher sufficiency implies Kolmogorov sufficiency. The converse is false in

general. Natural conjugate priors were introduced by RAuFA and

SCI..AIFER [11]. For a rigorous characterization of natural conjugate priors.

see [12]. The reviews of Bayesian statistics by LINDLEY [3, 13] present ex-

ceUent summaries of recent advances in the subject.

Section 2. EPSTEIN and SOBEL [14, 15] were the first to investigate the

properties of the exponential model applied to life test plans. In a series of

papers they made an intensive and extensive study of the statistical features

of a variety of exponential procedures for life testing. Their work greatly

influenced reliability theory and practice at the time and still strongly influences

current statistical practice in reliability. Government Handbook H-108 and

its subsequent modifications represent the Government's ((seal of approval*

and its effort to implement the theory by making readily available tables and

graphs for easy use of the exponential model [16].

Section 3. Stochastic monotonicity properties of the posterior mean are

derived using the concepts and methods of total positivity. (A comprehensive

and authoritative treatment of total positivity may be found in [17].) The-

orem A.1 in the appendix is similar to lemma 1, p. 276, of Karlin and Rubin [18].

In the mathematical insurance literature formula (3.3) is called the cred-

ibility formula. JEWELL [19, 201 has discussed Bayesian life testing.

This research was supported by the Air Force Office of Scientific Research

(AFSC), USAF, under Grant AFOSR-77-3179 with the University of California.

Reproduction in whole or in part is permitted for any purpose of the United

States Government.

APPENDI X

Posterior distributions corresponding to arbitrary priors and likelihoods with

the monotone ratio property.

We will prove the results mentioned in sect. 3.
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A. Theorem. Let .7,)(0) be a prior density on 9. LOl dato D (1., 7') T)d
likelihood L(Ok, T) be given such that for 0, < 0.,

L(0 14, T)/L(OJ., T)

is increasing in k and decreasing in T. Let g(O) be increasing in 0. Then

(A.1) jg(O)r(O 1k, T) dO

is decreasing in k (T fixed) and increasing in T (k fixed). The proof will be
given shortly.

A.2 Corollary. If L(O I,, T) o: 0- exp [- TiO], then

(A.2) P[6 > 0Ohk, T] =fn(0lk, T)d0
8,

is decreasing in k (T fixed) and increasing in T (k fixed). (See sect. 3 and (3.4).)

Proof. In theorem A.1, let g(O) 1 for 0>0, and 0 otherwise. 1

A.3 Corollary. Let L(;,Ik, t) oc k, exp [- ;.T] and g(;) be increasing in ,.

Then

(A.3) fg(A),-r(. Ik, T) G

0

is increasing in k (T fixed) and decreasing in T (k fixed).
Clearly (A.i) ((A.3)) implies that all moments of the posterior diAtribution

are decreaising (increasing) in k and increasing (decreasing) in T.

Proof of Theorem A. 1. For 01 < 02.

L(O,!k, T)IL(O.,k, T)

increasing in k implies that for k, < k.

L(Olk,, T)/L(Ok 2., T)

is increasing in 0. It is easy to see that this in turn implies that

(A.4) nz(Olk,, T)/ln(Olk,., T).

is also increasing in 0. Let

A = {OI(OIk 1, T) > n(OIk 2, T)}
and

B = {O(z(Ojk,, T) < (OIk 2, T)}.
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Let a--- inf g(O) and b = sup g(O). Then the ratio in (A.4) is increasing in 0
Osa O68

implies that a> b.
Now

. (O)L(O1k, T)-.=(0 jk,, T)] dO>aj'[.-r(Ok,. T)- -r(0k, T)]dO +
A

I bf [a(OIk,, T) - T(O k.,., T)]d0 = (a- b) JL(0Ik,. T) - 7(01k., T)]dO>.
B A

Hence, the integral in (A.I) is decreasing in k.
_k similar argument proves that the integral in (A. 1) is increasing in T.
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